If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+3x-200=0
a = 1; b = 3; c = -200;
Δ = b2-4ac
Δ = 32-4·1·(-200)
Δ = 809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{809}}{2*1}=\frac{-3-\sqrt{809}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{809}}{2*1}=\frac{-3+\sqrt{809}}{2} $
| -5n+4=-6 | | 5x-2=-3+3x+7 | | (4x)-4=24 | | 10x2=40 | | 11=-3n+15 | | 5x-2=-3+7 | | A/r(2)=C | | 24-y=204 | | 7n-4n=4n+8-4n | | 3x+10=6x–80 | | 12/5x=x+35 | | -7.8+3.6=x | | 2^{2x}+2^x-2=0 | | -8=b-12 | | 50+4=2(c-5) | | -9=d-4 | | -9x-+3=-103 | | 3.2x-7.4=-78x+3.6 | | y4-6y2+8=0 | | 5-2x=4x-7= | | 135=(x*15)/6 | | 1/2x+25=x | | 7x-4/5x=9/5-4/x | | -10=4+3v | | T=180+0,2y | | x+8=2-3x. | | 450x+(65-190x)=130 | | 5x^2=30x-40 | | 4b+8-6b=-32 | | 9x+8=10x+2 | | 4-t=39t-10-5 | | 7n+5+4n-2=2n+2(4n+6) |